nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 10, v.45 64-73
基于YOLOv8n的磁瓦缺陷检测算法
基金项目(Foundation): 四川省高校重点实验室项目(2021WYZ02); 四川省教育厅重点科研项目(16ZA0258)
邮箱(Email):
DOI:
摘要:

为了提高磁瓦表面缺陷检测的精度,提出基于YOLOv8n的磁瓦缺陷检测算法YOLOv8-OSE.采用全维度动态卷积模块替代颈部网络中的普通卷积,增强模型的特征提取能力,减少模型的计算量;其次,在颈部网络中加入置换注意力机制,通过结合通道和空间注意力,增强模型对小目标的检测效果,使模型更加精准地定位目标位置;最后,为了解决缺陷样本不平衡和宽高比问题,引入EIoU损失函数,提高模型的收敛速度和回归精度.在磁瓦数据集上的实验结果表明,YOLOv8-OSE算法的平均精度mAP@0.5达到87.6%,mAP@0.5∶0.95达到51.6%,相较于YOLOv8n算法,分别提升了4.5%和2.6%.同时,模型的参数量和计算量基本保持不变.与当前主流的检测算法相比,YOLOv8-OSE算法的检测精度具有一定优势,能够在保持低算力的同时满足高精度的部署需求.

Abstract:

In order to improve the accuracy of magnetic tile surface defect detection, a magnetic tile defect detection algorithm based on YOLOv8n is proposed.The primary contribution of this study lies in the omni-dimensional dynamic convolution module is used to replace the ordinary convolution in the neck network, thereby improving the model′s feature extraction capabilities and reduce computational load.Additionally, a shuffle attention mechanism is integrated into the neck network to improve the detection performance for small targets by combining channel and spatial attention, thus enhancing the model more accurate in locating the target positions.Finally, to address the issues of imbalanced defect samples and aspect ratios, the EIoU loss function is introduced to accelerate the convergence speed and improve regression accuracy of the model.Experimental results on the magnetic tile dataset show that the average precision mAP@0.5 of the YOLOv8-OSE algorithm reaches 87.6%,and mAP@0.5:0.95 reaches 51.6%,representing improvements of 4.5% and 2.6% respectively compared to the YOLOv8n algorithm.Meanwhile, the number of parameters and computational load of the model remain essentially unchanged.Compared to current mainstream detection algorithms, the YOLOv8-OSE algorithm demonstrates a certain advantage in detection accuracy, meeting high precision deployment requirements while maintaining low computational power.

参考文献

[1] 曹海翔,沈靖文,王善铭,等.永磁直流电机定子的振动分析[J].清华大学学报(自然科学版),2017,57(1):89-94.

[2] 明五一,贾豪杰,何文斌,等.透明件表面缺陷的机器视觉检测综述[J].机械科学与技术,2021,40(1):116-124.

[3] 郑晓曦,严俊龙.数学形态学在磁瓦表面缺陷检测中的应用[J].计算机工程与应用,2008,44(16):182-184.

[4] 徐光明.磁瓦表面缺陷自动检测识别方法的研究[D].广东:五邑大学,2010.

[5] 胡浩,李俊峰,沈军民.基于机器视觉的小磁瓦表面微缺陷检测方法研究[J].机电工程,2019,36(2):117-123.

[6] GAI R,CHEN N,YUAN H.A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J].Neural Computing and Applications,2023,35(19):13895-13906.

[7] WU T H,WANG T W,LIU Y Q.Real-time vehicle and distance detection based on improved yolov5 network[C].2021 3rd World Symposium on Artificial Intelligence.IEEE,2021:24-28.

[8] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7464-7475.

[9] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[C].European Conference on Computer Vision,2016:21-37.

[10] REDMON J.FARHADI A.YOLO9000:Better,Faster,Stronger[C].IEEE Conference on Computer Vision & Pattern Recognition,2017:6517-6525.

[11] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.

[12] 常海涛,军年,李晓梅.Faster R-CNN在工业CT图像缺陷检测中的应用[J].中国图象图形学报,2018,23(7):1061-1071.

[13] 郭龙源,段厚裕,周武威,等.基于Mask R-CNN的磁瓦表面缺陷检测算法[J].计算机集成制造系统,2022,28(5):1393-1400.

[14] 张晓晓,邓承志,吴朝明,等.基于改进YOLOv4的磁瓦缺陷检测算法[J].计算机科学,2023,50(S2):389-395.

[15] 李铁军,罗洁,富禄祥.基于改进YOLOv5的磁瓦表面缺陷检测方法研究[J].信息技术与信息化,2023(12):139-141.

[16] ZHANG Q L,YANG Y B.SA-Net:shuffle attention for deep convolutional neural networks[J].IEEE International Conferenceon Acoustics,2021,30(1):2235-2239.

[17] HUANG Y,QIU C,YUAN K,et al.Surface defect saliency of magnetic tile[J].The Visual Computer,2020,36(1):85-96.

基本信息:

DOI:

中图分类号:TP391.41;TP183;TM351

引用信息:

[1]骆首埔,符长友,李宝兵等.基于YOLOv8n的磁瓦缺陷检测算法[J].宁夏师范学院学报,2024,45(10):64-73.

基金信息:

四川省高校重点实验室项目(2021WYZ02); 四川省教育厅重点科研项目(16ZA0258)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文